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Abstract: The onset of the COVID-19 pandemic has compelled a swift transformation in higher-
education methodologies, particularly in the domain of course modality. This study highlights the
potential for artificial intelligence and machine learning to improve decision-making in advanced
engineering education. We focus on the potential for large existing datasets to align institutional
decisions with student and faculty preferences in the face of rapid changes in instructional approaches
prompted by the COVID-19 pandemic. To ascertain the preferences of students and instructors
regarding class modalities across various courses, we utilized the Cognitive Process-Embedded
Systems and e-learning conceptual framework. This framework effectively delineates the task
execution process within the scope of technology-enhanced learning environments for both students
and instructors. This study was conducted in seven Iranian universities and their STEM departments,
examining their preferences for different learning styles. After analyzing the variables by different
feature selection methods, we used three ML methods—decision trees, support vector machines,
and random forest—for comparative analysis. The results demonstrated the high performance of
the RF model in predicting curriculum style preferences, making it a powerful decision-making
tool in the evolving post-COVID-19 educational landscape. This study not only demonstrates the
effectiveness of ML in predicting educational preferences but also contributes to understanding the
role of self-regulated learning in educational policy and decision-making in higher education.

Keywords: online learning; technology-enhanced learning; educational machine learning; educational
artificial intelligence; feature selection methods; random forest; SVM; decision tree

1. Introduction

The COVID-19 outbreak has revealed the complex decision-making processes univer-
sities must undertake when prompt and judicious actions are required, and decisions must
be made under time pressure [1,2]. At the same time, the transition to remote instruction
during the pandemic has revealed opportunities to expand the use of online learning, while
also highlighting the drawbacks when the course modality does not align with instruc-
tor and student preferences. This decision-making process involves trade-offs between
safeguarding students and enhancing access to education while maintaining high-quality,
transformative learning experiences [3,4]. The swift transition from in-person to online
classes during the COVID-19 pandemic has highlighted the importance of decision-making
that considers the preferences of both instructors and students, given that the ability to
incorporate students into the decision-making enhances the likelihood of successful school
reform and student learning outcomes [5].
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One benefit of the increase in online learning is the opportunity to leverage artificial
intelligence (AI)’s ability to process large amounts of data to make timely decisions without
the need to delay decision-making for human-controlled data analysis [6]. For instance,
the decision to move instruction online or to being in person must be made quickly and
should consider instructors’ and students’ preferences [7]; however, the time needed to
survey both instructors and students may delay decision-making by several weeks. The af-
fordances provided by AI can potentially enable administrators to make well-informed
decisions that align with the needs of instructors and students while also optimizing the
learning experience [8]. Through the utilization of AI, academic institutions can tailor
course design and instructional modalities by using students’ and faculty preferences in
real-time, significantly enhancing educational equity within the university ecosystem [9,10].

Incorporating technological advancements within the educational milieu necessitates
the establishment of robust and adaptive quality assurance protocols that are tailored
to the needs of students and instructors within dynamically changing contexts [11–13].
Achieving equilibrium between individual preferences and optimal pedagogical outcomes
demands the conceptualization and implementation of a theory-driven framework for
decision-making and fortifying the quality and efficacy of technological integrations into
the course fabric [11,14]. At the same time, the self-regulated learning (SRL) process, where
students manage their learning through cognitive and motivational strategies, plays a
key role in shaping course modality factors, further informing AI-driven decision-making
models [15].

This paper aims to emphasize the potential of an AI tool that utilizes machine learning
(ML) techniques to address challenges associated with decision-making involving large
datasets. We ground this discussion by describing a study that developed an AI tool that
predicts preferences for course modality (e.g., online or in-person) within seven Iranian
Universities; however, this study aims to make a larger contribution to the potential for AI
and ML in data-driven decision-making in higher education. The findings of this study can
inform decision-making processes in higher-education institutions and contribute to under-
standing the factors influencing students’ preferences for online learning. By identifying
instructor and student preferences from existing large datasets available to institutions,
decision-makers can maximize the benefits of technology-enhanced learning by making
decisions about instructor and student preferences using a theory-driven data collection
approach. This paper describes such an ML approach that addresses the following re-
search questions:

RQ1: To what extent can machine learning (ML) predict student and instructor prefer-
ences for course modality in a post-Corona learning context?

RQ2: To what extent can psychological constructs associated with self-regulated
learning (SRL) predict student and instructors’ preferences for course modality?

2. Literature Review
2.1. Machine Learning in Education

Within education, ML methodologies play a pivotal role in the comprehensive exami-
nation of student performance [16], facilitation of learning processes, provision of nuanced
feedback, and personalized recommendations [17,18], as well as educational administration
and decision-making [19]. A wide variety of approaches have been proposed for how to
employ ML in educational settings.

2.1.1. Machine Learning Methods

Within educational studies, most ML techniques applied for clustering and prediction
purposes contain Artificial Neural Networks (ANN), decision trees (DTs), random forests
(RFs), and support vector machines (SVMs) [20]. Most articles compare the accuracy of
some of these methods to control the accuracy and interpretability of the model [18,21–23].
The appropriate model for improving prediction accuracy with categorical items depends
on factors such as sample size, the number of variables, and theoretical context in handling
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the data regarding the variables [24–27]. Studies have shown that SVM and RFs are ac-
curate for clustering purposes with multidimensional and large data, such as predicting
performance through activities and quarterly tests [18,28]. Conversely, methods such as
regression tree, RF, and C4.5 (i.e., an extension of the Iterative Dichotomiser 3 algorithm)
are highly effective for clustering datasets containing errors or random variations that
obscure underlying patterns. These methods are particularly advantageous for datasets
that are limited in size but require detailed, context-specific analysis [29]. For instance,
ref. [30] used DTs to predict student performance to help teachers provide adapted in-
structional approaches and supplementary practice for students likely to have difficulty
understanding the content.

2.1.2. Variable Selection in Machine Learning

In machine learning (ML), the learning model requires the inclusion of relevant vari-
ables and excluding the unhelpful variables to identify the most relevant variables that
contribute to accurate predictions [31,32]. In this context, wrapper methods, such as Recur-
sive Feature Elimination (RFE) and Boruta, have proven to be effective by considering the
intricate interactions between variables and predictive models [33], while filter methods,
such as chi-square and mutual information, focus on evaluating the individual relevance of
predictors, shedding light on their independent contributions, as pointed out by [34]. This
capability makes these methods ideal for capturing and simplifying complex relationships
and interactions [35]. Employing a combination of filter and wrapper methods in variable
selection is essential for leveraging diverse ML approaches [36], often using a strategic
approach like majority voting identified by multiple selection methods [37].

2.2. Related Works

Faculty readiness for online teaching, particularly the challenges faced by those un-
familiar with the format, was extensively investigated by Singh et al. [12]. They notably
focused on integrating laboratory components, distinct from other types of classes, within e-
learning systems frameworks during the COVID-19 pandemic. In subsequent work, Singh
et al. [38] investigated the impact of various course modalities on different aspects of learn-
ing, highlighting the importance of educational environment decisions. Carmona et al. [39]
applied K-dependence Bayesian classifiers in machine learning to facilitate resource se-
lection tailored to an individual student’s prior knowledge, showcasing the integration
of data-driven decision-making into teaching approaches and teacher preferences. Con-
versely, Kotsiantis et al. [40] pursued a methodological approach involving decision trees
and neural networks. Their primary goal was to predict students’ educational material
preferences through designed surveys by considering student preferences. Hew et al. [41]
used gradient-boosting tree methods with great precision to bridge the gap between ex-
pected and actual data about predicting students’ success in Massive Open Online Courses
(MOOCs), aiming for a cohesive approach to improve the reliability and accuracy of their
research findings. Remarkably, to our knowledge, no existing literature has yet harnessed
the potential of ML techniques to predict student and instructor preferences within the
context of course modality using theory-driven approaches. Hebbecker et al. [42] delved
into the theoretical foundations of classroom-level data-based decision-making while also
examining the impact of teacher support on this process. Through latent mediation analy-
ses on longitudinal data from teachers and students, the study explores the connections
between instructional decision-making based on pedagogical approaches and students’
reading progress.

2.3. Theory-Driven ML in Educational Research

Two main threats that reduce the repeatability and reliability of ML are the overfitting
and underfitting of models due to limited sample sizes for training and largely defined
variables [43]. Theory-driven ML approaches have been proposed to overcome the problem
of inappropriate model fitting [9]. Theory-driven ML leverages existing theoretical frame-
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works (e.g., self-regulated learning) to scaffold models by identifying relevant variables
and collecting relevant data [9,44]. Theory-driven ML models use theories of learning
to define variables (or features) to include in predictive models. Variable selection meth-
ods assist theory-driven ML in determining whether to reduce the problem’s variables
based on their importance for model predictability and their interdependence with other
variables [35,44,45].

3. Theoretical Framework

Within a course, the conditions related to the student are overshadowed by the course-
related conditions set by the instructor. E-learning systems have enhanced educational
accessibility and introduced diverse avenues through which learners can interact with
educational materials, thereby contributing substantively to the advancement of educa-
tional equity among a broad spectrum of students [46,47]. So, it is necessary to increase
the scope of investigation in Technology-Enhanced Learning (TEL) as a requirement. TEL
provides a framework for how an e-learning system meets the requirements of educational
stakeholders [48]. People engage with e-learning systems, while e-learning technologies
facilitate both direct and indirect interactions among various user groups that affect learn-
ing. E-learning systems encompass all activities aligned with pedagogical models and
instructional strategies. Course conditions can be seen as part of the e-learning services
component, which encompasses all activities aligned with pedagogical models and in-
structional strategies and controls the task and cognitive condition [46,49]. The external
evaluation part of Cognitive Process-Embedded Systems (COPES) can be seen as part of
the people component, as it involves learners engaging with the e-learning system, and the
quality of the e-learning system affects their evaluation. By adding the conditions of the
e-learning systems framework like pedagogy, instructional strategies, and the quality of
Information Communication Technology (ICT), we can investigate most factors related to
the course modality [46].

3.1. Self-Regulated Learning (SRL)

The concept of self-regulated learning involves perceiving learning as a dynamic
process that entails the adaptive adjustment of cognition, behavior, and motivation to the
content and the educational environment [15]. Refs. [50,51] proposed an SRL theory as a
guiding framework in different learning environments for preferences of course modality,
considering different conditions like students and instructors. One widely used theoretical
model for investigating learning within self-regulated contexts is the Cognitive Process-
Embedded Systems (COPES) model [46]. The COPES model investigates the process of
learning during a task, considering the conditions that shape the satisfaction of tasks accord-
ing to the learning goal and standards [46,52]. Conditions encompass both internal factors,
such as the learner’s characteristics and knowledge about the topic, and external factors,
including environmental variables that are believed to impact the task-related internal
conditions [46]. Conditions like the skill and knowledge of students, motivation models,
and task content are inputs in information processing and decision-making, and the out-
comes will be used to evaluate task success based on predefined standards and individual
goals [15,46]. Given the success of the COPES model in explaining student behavior in
self-regulated learning contexts, the conditions from the COPES model serve as useful
variables to aid prediction in an ML model [15,46].

3.2. Course Modality as a Part of Technology-Enhanced Learning

Technology-enhanced learning (TEL) is the incorporation of technology in learning
environments to promote the process of teaching and learning [53]. Any tool that aids
in improving decision-making and learning experiences or adds value to educational
environments by aligning the environment, tools, and content together can be classified as
TEL [54]. Therefore, the preference for different course modalities is related to individual
beliefs and experience with, and preferences for, the integration of technology within the
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classroom [54,55]. As such, AI-based preference prediction tools should be investigated as
a part of improving TEL [54,55].

3.3. E-Learning Systems

Within a course, conditions related to the student are often overshadowed by those set
by the instructor. E-learning systems have enhanced educational accessibility, providing
diverse avenues for interaction with materials, which advances educational equity among
a broad spectrum of students [56]. These systems meet the needs of various stakeholders
through a framework that integrates pedagogical models, instructional strategies, and In-
formation Communication Technology (ICT) [48]. In the context of COPES, the course
conditions align with the e-learning services component, which controls both task and
cognitive conditions, while the external evaluation aspect aligns with the people compo-
nent, as it involves learner engagement and system evaluation [48,52]. By incorporating
the conditions of e-learning systems, such as pedagogy and ICT quality, into the COPES
framework, we can investigate most factors related to course modality [48] (Figure 1).

Figure 1. Framework from the combination of COPES and e-learning systems for course modality.
Adapted from [46,48].

4. Research Design
4.1. Participants

The research was carried out among 140 instructors and 379 students from the en-
gineering departments of seven Iranian universities, namely the University of Tehran,
Sharif University of Technology, Isfahan University of Technology, Shiraz University, Sistan
and Balouchestan University, Imam International University, and Ahvaz Shahid Chamran
University. Participants were recruited via email from these seven universities. There
were no restrictions based on age or other demographic factors, and participants did not
receive any incentives or rewards for their involvement. For this study, two parallel sur-
veys were developed and used to collect data from instructors and students. The surveys
consisted of 50 and 49 questions, respectively, about the six dimensions of our theoretical
framework of self-regulated learning and e-learning systems theory. Items were written to
capture a variety of beliefs across six subscales, including theory and practice, motivation,
pedagogy, knowledge, insight, and skills, working life orientation, quality of assessment,
and information communication technology (Supplementary S17, Table S21). In addition,
participants were asked to indicate the type of course in which they were enrolled or taught
(i.e., theoretical–practical, theoretical, and practical) and assess their preferred situation in
each type of course using Likert scales (Supplementary Table S1). The lack of an established
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standardized survey called for the generation of pertinent survey items corresponding to
distinct components of the framework. A pilot study of the surveys was conducted with
ten students and five instructors to identify potential issues with item clarity.

Prior to analysis, data cleaning procedures were implemented to ensure the suitability
and accuracy of the collected data [22,47,57,58]. This procedure consists of identifying and
addressing any inconsistencies, errors, outliers, or missing values in the dataset. For the
student survey, the items of F2 and F3 for fewer than 50 students were empty, and we put
the value of the response variable instead of them. Only 160 students responded to the I4
response variable, as they did not have experience with practical types of classes (R code
and libraries are in Supplementary S17 and Table S21).

4.2. Validity and Reliability Analysis

To examine the reliability of the survey items, Cronbach’s alpha coefficient was used
to assess the internal consistency of the items [59], while discriminant validity was assessed
using the Heterotrait–Monotrait Ratio of Correlations (HTMT) method [60], which exam-
ines the correlations of indicators across constructs and within the same construct [61].
The HTMT correlation ratio is an approach to examine the extent to which latent constructs
are independent of each other [62,63]. Acceptable values of composite reliability/Cronbach
alpha range from 0.60 to 0.70, while the acceptable range of HTMT is less than 0.9 [62,63]
(methodology in Supplementary S8; results in Tables S8 and S9).

Cronbach’s alpha for instructors’ surveys has a reliable value with a 0.95 confidence
interval (α = 0.767). However, for students’ surveys, there are a couple of subscales with
few items, which causes a reduction in Cronbach’s alpha. For the students’ survey, the 0.95
confidence interval has also a reliable value (α = 0.598). This is consistent with the findings
of Rempel et al. [62,64], who found that Cronbach’s alpha can be reduced by subscales with
few items. The result of Cronbach’s alpha for each subscale for both surveys is presented in
Table S22 of Supplementary S18. Tables S8 and S9 show the HTMT values for all subscales
of both surveys. The highest HTMT value observed for instructors is 0.6 and for students,
0.532, which indicates that there is sufficient distinction between any two subscales in both
surveys [62,63].

5. Methodology
5.1. Machine Learning Process

The first step in the machine learning (ML) process is variable selection, followed
by modeling the problem using ML models as illustrated in Figure 2. In this study, both
surveys feature a relatively large number of questions (variables) and a relatively limited
number of responses. Given our interest in the most relevant variables and the varied
accuracy of different variable selection methods, considering the contribution to accurate
predictions and imbalanced data (where one class in some variables has significantly
fewer instances compared to another class), we employed four interpretable variable
selection methods with a significance level of α = 0.05. To enhance the precision of
variable selection and subsequent ML model implementation, a refined approach was
adopted as outlined in [13,65,66]. This approach involved retaining questions that exhibited
similarity or analogous distinctive response classes to those found in Likert scale questions,
excluding binary (Yes/No) inquiries, and questions with unrestricted response options [67].
Additionally, questions related to a specific learning management system, socioeconomic
indicators, or personal identifying details such as the name of the university and age,
were excluded. Consequently, 38 questions were retained from the student survey, while
34 questions were preserved from the instructors’ survey for variable selection [66].
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Figure 2. Process of ML.

The chi-square test, a filter method, computes the chi-square statistic for each variable
about the target item and compares it to a critical value or p-value determined by the chosen
significance level, indicating a significant association between categorical variables [67–69].
Variables with chi-square statistics exceeding the critical value or p-values below the
significance level are selected [68,70]. The Maximum Relevance Minimum Redundancy
(MRMR) method, another filtering method, aims to identify a subset of variables that have
high relevance to the target variable while minimizing redundancy among the selected
variables [71]. Wrapper methods employ a specific ML model to assess subsets of variables
and identify the optimal subset that maximizes the model’s performance [72–75]. Boruta,
a wrapper method, employs a random forest model to evaluate variable importance, adding
randomly generated variables and comparing their significance to original variables [76].
Recursive Feature Elimination (RFE), an embedded method, involves training a model
on the full variable set, ranking variables based on their importance, eliminating the least
important variables, and repeating this process [77,78].

Six response variables (Table S12) representing theoretical, practical, and theoretical–
practical class types were analyzed using supervised ML models. The majority voting
method was utilized to integrate outcomes and find the best sets of variables for each
response variable [77,78]. This integration not only enhances the precision and reliability of
the predictive model but also addresses challenges such as overfitting, noise, and the curse
of dimensionality [77,78]. The REF method incorporates the population of the primary
sample of variables entering the ML model. Moreover, the chi-square method lacks a
definitive boundary for variable exclusion [36,65]. A threshold for the chi-square test was
imposed, and the top variables according to REF criteria were selected from the chi-square
test. The variable selection rule for majority voting to enter the ML stage is as follows: If
an item has been eliminated by two or more variable selection methods, the item will be
removed (Table S6). Tables S2–S5 in the Supplementary indicate the variables selected by
each of the chi-square, MRMR, Boruta, and RFE methods, describing the situation of each
variable concerning the response variables. For REF and Boruta, 70% of the data were used
for training ML models and 30% for testing, with the DT (CRAT) model used for Boruta
and RF for the REF with 500 trees [22,36,45,57,65]. Table S7 indicates the variables that
remained for ML.
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5.2. Machine Learning Models

After selecting the variables, the next step in the ML process is to model the problem
using ML models. In this study, according to [9], three ML models were utilized, including
DT, SVM, and RF)

The DT (i.e., the CRAN model) method constructs a tree-like model of decisions
and their possible consequences. Each variable in each tree predicts the response variable,
and the leaf of DT represents the prediction. The construction of the tree involves recursively
partitioning the data based on the most informative variable, aiming to maximize the
separation of the target variable. This process continues until a stopping criterion is met,
such as reaching a maximum depth in variable searching or a minimum number of samples
of data for each variable per leaf [79] (methodology in Supplementary S13; results in
Tables S15 and S16).

The RF model constructs an ensemble of decision trees, where each tree is trained on
a different subset of the data using a random selection of variables. During prediction,
the model aggregates the predictions of individual trees to make the final prediction, result-
ing in a robust and reliable model. Additionally, RF identifies the key factors influencing
the outcome. The cross-validation procedure for RF involved partitioning the dataset into
70% for training and 30% for testing, adhering to a significance level of α = 0.05 [80]
(methodology in Supplementary S12; results in Tables S13 and S14).

As the response variable has multiple dimensions, the multiclass SVM was used to
find an optimal hyperplane that separates different classes. Train data lie closest to the
hyperplane that separates the classes in a binary classification problem. This hyperplane
is determined by identifying a subset of data according to each variable called support
vectors. The SVM model identifies these support vectors during the training phase and
uses them to compute the optimal hyperplane. After we selected the variables of the ML
model, by separating the test and train starts, we needed to learn them.In this study, 70% of
the data were used for training the ML models, and 30% of the data were used to test the
models [81] (methodology in Supplementary S14; results in Tables S17 and S18).

5.3. Accuracy of ML Models

Accuracy in machine learning refers to the measure of how often a classification model
correctly predicts the true class of an instance, typically expressed as a ratio of correct
predictions to the total number of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Equation (1) shows the formulation of accuracy in ML.
Precision is the ratio of correctly predicted positive observations to the total predicted

positives. It indicates how precise the model’s positive predictions are, providing a measure
of the relevancy of its positive results:

Precision =
TP

TP + FP
(2)

Equation (2) shows the formulation of precision in ML.
Recall (also known as sensitivity or the True Positive Rate) is the ratio of correctly

predicted positive observations to all the actual positives. It indicates how well the model
can capture all the positive instances:

Recall =
TP

TP + FN
(3)

Equation (3) shows the formulation of recall in ML.
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The F1-score is the harmonic mean of precision and recall. It provides a single metric
that balances both concerns of false positives and false negatives, making it particularly
useful when the class distribution is imbalanced:

F1-score = 2 × Precision × Recall
Precision + Recall

(4)

Equation (4) shows the formulation of the F1-score in ML.
The explication of True Positives (TP) as the quantification of instances accurately

designated as positive, True Negatives (TN) as the quantification of instances accurately
designated as negative, False Positives (FP) as the quantification of instances inaccurately
designated as positive, and False Negatives (FN) as the quantification of instances inaccu-
rately designated as negative, contained within the framework, provides a lucid exposition
of the pivotal constituents that underlie the accuracy metric [22,57].

6. Results
6.1. Prediction Using Classification Techniques

The outcomes derived from the ML prediction methodologies concerning the applica-
tion of five-point Likert scale responses to anticipate the six designated response categories
reveal an elevated level of precision attributed to random forest (RF) models (Table 1: the
results summary of Tables S13, S15 and S17; Table S22 indicates the F1-score, recall, and pre-
cision), which is consistent with prior scholarly investigations [82]. According to Table 1,
SVM and DT have less accuracy in comparison to RF. However, in all of them, the accuracy
is not at an acceptable level.

Table 1. The accuracy results of ML models based on test results for a five-point Likert spectrum for
students and instructors (the results summary of Tables S14, S16 and S18). Table S22 indicates the
F1-score, recall, and precision.

Models
Students Instructors

I2 Theoretical I4 Practical I6 Theoretical–Practical H2 Theoretical H4 Practical H6 Theoretical–Practical

SVM 0.45 0.43 0.56 0.48 0.53 0.42
DT 0.39 0.40 0.45 0.41 0.53 0.35
RF 0.45 0.43 0.58 0.49 0.62 0.37

The F1-scores for the “Strongly Agree” (SA) and “Strongly Disagree” (SD) classes
exhibit significant variability across models and items, indicating inconsistent classification
performance. For the SD class, certain models, such as RF and DT, achieve high recall
(perfect in some cases) but low precision, resulting in moderate F1-scores, reflecting the
models’ tendency to over-predict this class. In contrast, the SA class often has very low or
zero F1-scores, particularly for items like I4, H4, and H6, suggesting a severe difficulty in
accurately identifying instances of “Strongly Agree” (Table S22).

We address class imbalance using the Random Over-Sampling Examples (ROSE)
technique, which generates synthetic samples from minority classes to balance the dataset
with 70% train and 30% test. ROSE applies a smoothed bootstrap resampling process,
creating new data points that reflect the distributional characteristics of minority instances
by drawing from a kernel density estimate, rather than simply duplicating existing samples.
This method is particularly effective for datasets with ordinal data, as it enhances the
diversity of training data and improves the generalization capabilities of machine learning
models [83–85]. ROSE maintains the structural integrity of the data while improving the
model’s ability to differentiate between categories, especially in tasks involving ranking
or classification [86,87]. The results demonstrate that while RF continues to perform well,
showing improved accuracy in items such as I4 (practical) for both students and instructors,
SVM and DT still face challenges. Instructors’ practical responses (H4) particularly illustrate
how ROSE reshapes the dataset, allowing SVM and RF to achieve slightly higher accuracy
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compared to the non-ROSE sampling. However, the data size remains a limiting factor,
as ROSE-driven improvements in accuracy, while notable, do not lead to a significant leap
in predictive power across all items. This suggests that while ROSE helps mitigate class
imbalance, further adjustments, such as merging Likert categories, might be needed to
enhance model robustness.

The F1-score, recall, and precision metrics (Tables 2 and S24) further illustrate the
impact of ROSE sampling on model performance across various categories. For students’
theoretical and practical categories (I2 and I4), RF sees an improvement in precision and
recall, particularly in categories with previously low representation, such as strongly
disagree or agree, where synthetic samples boost prediction diversity. However, support for
middle-range categories, such as neutral, remains less robust, highlighting the continued
challenges faced by models like DT and SVM. Instructors’ responses, particularly for
theoretical–practical categories (H6), demonstrate a noticeable increase in recall for SVM
after applying ROSE but at the cost of reduced precision, signaling a tendency for over-
prediction in some categories. This trade-off is seen across models, where the addition
of synthetic samples helps increase recall but introduces more false positives, reducing
precision and yielding modest improvements in F1-scores. This suggests that while ROSE
helps balance the dataset, its effectiveness in improving predictive performance is nuanced
and dependent on the class distribution.

Table 2. The accuracy results of ML models based on test results for a five-point Likert spectrum
for students and instructors via the ROSE method of sampling (F1-score, recall, and precision are in
Table S24).

Models
Students Instructors

I2 Theoretical I4 Practical I6 Theoretical–Practical H2 Theoretical H4 Practical H6 Theoretical–Practical

SVM 0.44 0.66 0.47 0.64 0.46 0.54
DT 0.38 0.62 0.41 0.61 0.21 0.32
RF 0.47 0.74 0.58 0.64 0.36 0.43

Since the ROSE imbalance model did not sufficiently improve accuracy, a merging
approach was employed to address the response imbalance between the “strongly agree”
and “strongly disagree” categories. This approach consolidated these classes, reducing the
number of categories in the Likert scale to enhance model performance. This approach
reduces the students’ and instructors’ bias in responses, merges “strongly agree” and
“agree” responses, and “strongly disagree” and “disagree” classes [88]. After merging the
response classes, the implementation of ML changed to that of Table 3. And after merging
these response classes, the performance of the machine learning models improved as shown
in Table 3.

Table 3. Accuracy averages of models for students and instructors. Table S23 indicates the F1-score,
recall, and precision.

Models
Students Instructors

I2 Theoretical I4 Practical I6 Theoretical–Practical H2 Theoretical H4 Practical H6 Theoretical–Practical

SVM 0.70 0.75 0.80 0.50 0.65 0.55
DT 0.71 0.72 0.71 0.53 0.65 0.48
RF 0.78 0.81 0.94 0.69 0.72 0.79

Results in Table 3 demonstrate a significant improvement in prediction accuracy
(Table S11; Supplementary S10. Table S23 indicates the F1-score, recall, and precision),
particularly for the RF model, which remained more accurate than the DT and SVM
methods. The change from a 5-point Likert scale to a 3-point Likert scale was particularly
beneficial for the analysis of instructors’ survey responses due to an increase in the accuracy
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of prediction for three response variables of the instructor. Unlike the RF model for
the instructors, results indicated that DT and SVM could not make accurate predictions
within the 3-point Likert scale for the instructors (specifically, the H4 and H6 response
variables), which could be the result of the small sample, though this is not true for the
students’ variables.

Despite the observed accuracy levels within the five-point Likert scale, discernible dis-
crepancies surfaced in the “strongly agree”, “strongly disagree”, and “Neutral” classifications
(Tables 1 and 2). Regardless of the employed Likert scale, it is evident (Supplementary S17)
that the “Neutral” class consistently manifested the highest error rates. This phenomenon
can be attributed to the imbalance in the population of the “Neutral” class according
to the population of this class compared to other classes. According to Tables S13–S18,
the random forest method demonstrated superior accuracy levels concerning the “Neutral”
category in comparison to the remaining classification methods, regardless of the employed
Likert scale. While the DT model has acceptable accuracy in ranges of agree and disagree
for 3-point Likert, their effectiveness decreases within the “Neutral” class of 3-point Likert
in comparison with the 5-point Likert (Supplementary S17). Within the class reduction
process from five-point Likert to three-point Likert, the “Neutral” class remained constant
in quantity, unlike the other two categories that experienced augmentation which increased
the imbalance of this class. This merging of imbalanced classes subsequently heightened
the likelihood of errors within the Neutral class. Meanwhile, the SVM model demonstrated
greater accuracy upon the transition from a five-point to a three-point Likert scale. This
enhancement in accuracy can be the output of merging two imbalanced classes. Despite
the smaller number of data records from instructors, their predictions demonstrated higher
accuracy and a unanimous opinion in comparison to the students. This can be attributed
to the defined theoretical framework and strong variable selection, which is aligned with
instructors’ preferences and lets their responses be more predictable.

The models exhibit strong performance in classifying the “Agree” (A) class, as evi-
denced by consistently high F1-scores of 0.809756, with both precision and recall exceeding
0.80. This suggests that the models accurately identify instances of agreement with minimal
misclassification. For the “Disagree” (D) class, moderate F1-scores of 0.657143 and closely
aligned precision and recall indicate a balanced but less robust performance. However,
the models demonstrate lower performance in classifying the “Neutral” (N) class, reflected
in significantly lower F1-scores (Table S23).

6.2. Subscales’ Ranking and Framework

Given the results above, the determination of subscale rankings in predicting student
and instructor preferences (RQ2) was undertaken by leveraging the advanced classification
capabilities of the RF. The Mean Decrease in Impurity methodology, which assesses the
significance of variables, was harnessed for this purpose (Supplementary S15; the most
important variables of RF and DT are in Table S19). For both instructors and students,
pedagogy and motivation are the most important subscales to increase the predictability
of the response variables (course modality); however, the ‘theory and practice’ subscale
indicated comparably diminished predictability. This diminished predictability might be
related to the population of “Neutral” responses in related items in the survey as seen in
the Supplementary Materials (S12–S14). The subscale of ‘Knowledge, insight, and skill’
also provides less information for predictability for the instructors when compared to
the students. The subscale of ‘working-life orientation’ also is a prominent subscale for
both students’ and instructors’ theoretical–practical response variables. Determinative
subscales such as motivation, pedagogy, insight, and skills, working-life orientation, quality
of assessment, and ICT assume pivotal roles in shaping preferences. It should be noted
that the correlation of the theory and practice subscale with the responses is not high
(Supplementary S12–S14).
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7. Discussion

The results of the study indicate the superior predictive capabilities of the RF model
in comparison to alternative models such as DT and SVM. Indeed, RF can handle high-
dimensional response classes, imbalances, and multivariable situations. This study corrob-
orates other studies where RF has been compared to other ML models, such as SVM and
Logistic Regression [89,90]. A notable finding from this study is the predictive efficacy of
RF models for “Neutral” responses, which is in an acceptable range of accuracy for both
the 3-point and 5-point Likert scales. The SVM also provides accuracy in an acceptable
range; however, DT has lower accuracy in comparison to SVM for most of the response
variables. Consequently, the DT model tends towards divergent classifications with more
clear distinct classes, thereby decreasing its suitability for high-level classification under-
takings. This observation aligns with prior research [91,92]. However, the discriminatory
boundaries between response classes like “agree” and “strongly agree” are not always an
indicator of non-biased selection.

The COPES and e-learning systems theoretical frameworks were used to define the
subscales and subsequently the variables. Utilizing four different variable selection meth-
ods helped to simplify the ML model and select the most relevant variables, which made
the prediction more robust [91,92]. This means that some of the variables were fully aligned
with the response variables and could help us to predict the course modality. Indeed, the de-
fined subscales and variables from the theoretical framework with a high level of confidence
can explain the course modality preferences for both instructors and students [91–94].

The subscales were defined according to three conditions in the theoretical frame-
work, after which the ML ranked the subscales according to the responses (Table 4 and
Figure 1). Motivation and pedagogy were categorized under course and cognition condi-
tions. Alignment between pedagogy and motivation was the most prevalent amongst all
other subscales. This result does not mean that other subscales like those related to task
conditions are not important, but it means that for any decision-making about the course
modality, the pedagogical approach of the instructor and how to motivate students should
be prioritized and studied in any environment that is aligned with the result of studies
like [91–96].

Table 4. Ranking of different dimensions based on the average reduction in impurity of each group
of items in Supplementary S15 and Table S19.

Groups

Students Instructors

I2 Theo. I4 Prac. I6 T-P H2 Theo. H4 Prac. H6 T-P

Likert type (5-scale)

1 Ped. Ped. Ped. Ped. Ped. Work-life Ori.

2 Motiv. Motiv. Work-life Ori. Motiv. Motiv. Ped.

3 Qual. of Assess. & ICT Know., Ins. & Skill Motiv. Work-life Ori. Work-life Ori. Motiv.

4 Know., Ins. & Skill Theory & Pract. Qual. of Assess. & ICT Qual. of Assess. & ICT Qual. of Assess. & ICT Theory & Pract.

5 Work-life Ori. Work-life Ori. Know., Ins. & Skill Know., Ins. & Skill Theory & Pract. Qual. of Assess. & ICT

6 Theory & Pract. Qual. of Assess. & ICT Theory & Pract. Theory & Pract. Know., Ins. & Skill Know., Ins. & Skill

Likert type (3-scale)

1 Ped. Ped. Ped. Ped. Ped. Motiv.

2 Motiv. Motiv. Motiv. Motiv. Motiv. Ped.

3 Qual. of Assess. & ICT Know., Ins. & Skill Qual. of Assess. & ICT Know., Ins. & Skill Work-life Ori. Work-life Ori.

4 Know., Ins. & Skill Theory & Pract. Know., Ins. & Skill Work-life Ori. Qual. of Assess. & ICT Theory & Pract.

5 Work-life Ori. Work-life Ori. Work-life Ori. Theory & Pract. Theory & Pract. Qual. of Assess. & ICT

6 Theory & Pract. Qual. of Assess. & ICT Theory & Pract. Qual. of Assess. & ICT Know., Ins. & Skill Know., Ins. & Skill

Note: Abbreviations represent the following—Ped. indicates Pedagogy (blue); Motiv. indicates Motivation
(orange); Work-life Ori. indicates Work-life Orientation (green); Qual. of Assess. & ICT indicates Quality of
Assessment and ICT (lighter gray); Theory & Pract. indicates Theory and Practice (light gray).
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The findings from this study demonstrate the potential for ML to accurately classify
student and instructor course modality preferences based on theoretical frameworks. So,
the answer to the first research question is positive because the ML models with good
accuracy can explain the multidimensional data and predict the preferences of students
and instructors regarding the class modality.

The answer to the second research question is also affirmative. By considering the
COPES and e-learning systems as the frameworks and studying the preferences about
course modality in the context of course, task, and cognitive condition, we have a tool that
predicts the preferences of students and instructors in higher education. Indeed, while
these theories separately do not directly explain the course modality situation, the course
modality is explainable by adding the course conditions that come from the e-learning
framework to the COPES framework.

8. Conclusions

The necessity for adaptable instructional modalities is paramount to upholding ed-
ucational standards and ensure accessibility in accurately predicting course modality
preferences, which is critical for universities as they address the intricacies of education in
the post-pandemic landscape. The alignment of pedagogical strategies with motivational
factors has emerged as a significant predictor, emphasizing the importance of considering
both instructional design and student engagement when selecting course modalities. This
finding is instrumental for educational institutions aiming to optimize learning experiences,
where the flexibility and adaptability of course delivery methods are crucial. Aligning edu-
cational strategies and course designs with the preferences revealed through ML analysis
promises to create more stimulating and efficacious learning environments, thereby enhanc-
ing student engagement and achieving superior educational outcomes [91,92,94,95,97]. The
results of this study are applicable to universities and educational institutions that have
large amounts of high-dimensional data with lots of different subscales. As the type of data
in access universities varies, in situations where survey data are not available, behavior
data or historical preference records can be used to implement machine learning, specif-
ically RF as the most robust model according to our result, to make decisions about the
educational policies and activities like course modality based on students’ and instructors’
preferences [91,92,94,95]. The research further elucidates the significance of incorporating
psychological constructs related to self-regulated learning within the decision-making
paradigm. This underscores the merit of a data-informed approach in crafting educational
experiences that are both personalized and attuned to the evolving dynamics of student
and instructor needs. Such an approach is instrumental in fostering educational strategies
that are responsive and tailored, reflecting the contemporary demands of the academic
community. The investigation showcases the pivotal role of AI in transforming higher
education by facilitating a harmonious balance between the quality of instruction and
the multifaceted needs of the academic populace. This endeavor is crucial not only for
augmenting the flexibility and robustness of educational frameworks but also for ensur-
ing their continued relevance and efficacy in addressing the exigencies of forthcoming
educational paradigms.

9. Future Research Directions

The development of predictive models for student and faculty preferences through this
research marks a pivotal advancement in comprehending and accommodating the needs of
the academic community, thereby providing a critical instrument for administrators striving
to deliver educational experiences that are high in quality, equity, and effectiveness. Future
research endeavors should aim to refine these predictive models, with a particular focus
on elucidating the roles of motivation and pedagogy or exploring alternative models that
more acutely incorporate these dimensions. Such efforts necessitate comprehensive data
collection strategies within educational settings, encompassing a variety of sources to amass
data conducive to the application of advanced AI Big Data methodologies. This approach
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will facilitate educational institutions in making more informed, confident, and precise
decisions regarding course modality selections, leveraging the rich tapestry of data at
their disposal.

Supplementary Materials: The following supporting information can be downloaded https://www.
mdpi.com/article/10.3390/info15100590/s1, Figure S1: How the I(X;Y) obtain the information by
mutual information method. Figure S2: Variable Importance in Random Forest for H2 (Instructors)
within the five-level Likert spectrum. Figure S3: Variable Importance in Random Forest for H4
(Instructors) within the five-level Likert spectrum. Figure S4: Variable Importance in Random Forest
for H6 (Instructors) within the five-level Likert spectrum. Figure S5: Variable Importance in Random
Forest for I2 (Students) within the five-level Likert spectrum. Figure S6: Variable Importance in
Random Forest for I2 (Students) within the five-level Likert spectrum. Figure S7: Variable Importance
in Random Forest within the 3-point Likert spectrum for H2. Figure S8: Variable Importance in
Random Forest within the 3-point Likert spectrum for H4. Figure S9: Variable Importance in Random
Forest within the 3-point Likert spectrum for H6. Figure S10: Variable Importance in Random
Forest within the 3-point Likert spectrum for I2; Table S1: Likert’s five-point spectrum, codes, and
definitions. Table S2: Confirmed questions based on the Boruta method using the DT model with
a ratio of 30% test to 70% learning for train data. Table S3: Score of questions by MRMR method.
Table S4: Ranking of number of best subsets with k = 5 (students) and k = 10 (instructors) of RF
for RFE method as variable selection. Table S5: Results of Chi-squared ranking by considering the
order of question from k-fold cross-validation by RFE method. Table S6: Rejected and confirmed
questions based on the variable selection methods and by the data frame that involved. Table S7:
Remaining questions in the problem (Question codes: Table S21). Table S8: Heterotrait-Monotrait
ratio output for instructors (points of significance). Table S9: Heterotrait-Monotrait ratio output
for students (points of significance). Table S10: Best 12 questions of instructors and 11 questions
of students. Table S11: Changes in the accuracy of the results from 5-point to 3-point Likert scale.
Table S12: Response variables according to the surveys. Table S13: Random Forest within the 5-point
Likert spectrum on test data (in percentage) of train and test. Table S14: Random Forest within the
3-point Likert spectrum on test data (in percentage) of train and test. Table S15: Decision Tree (DT)
within the 5-point Likert on test data (in percentage) of train and test. Table S16: Decision Tree (DT)
within the 3-point Likert on test data (in percentage) of train and test. Table S17: Support Vector
Machine (SVM) within the 5-point Likert on test data (in percentage) of train and test. Table S18:
Support Vector Machine (SVM) within the 3-point Likert on test data (in percentage) of train and test.
Table S19: Most important variables of the RF and DT method within the 3-point Likert spectrum.
Table S20: R packages and their citations. Table S21: Survey of students and instructors (translated
from Farsi (Persian) to English). Table S22: F1, recall, precision for 5-scale Likert. Table S23: F1, recall,
precision for 3-scale Likert. Table S24: F1, recall, precision for 5-scale Likert sampling by ROSE.
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